Exact deterministic representation of Markovian SIR epidemics on networks with and without loops.
نویسندگان
چکیده
In a previous paper Sharkey et al. (Bull Math Biol doi: 10.1007/s11538-013-9923-5 , 2012) proved the exactness of closures at the level of triples for Markovian [Formula: see text] (susceptible-infected-removed) dynamics on tree-like networks. This resulted in a deterministic representation of the epidemic dynamics on the network that can be numerically evaluated. In this paper, we extend this modelling framework to certain classes of networks exhibiting loops. We show that closures where the loops are kept intact are exact, and lead to a simplified and numerically solvable system of ODEs (ordinary-differential-equations). The findings of the paper lead us to a generalisation of closures that are based on partitioning the network around nodes that are cut-vertices (i.e. the removal of such a node leads to the network breaking down into at least two disjointed components or subnetworks). Exploiting this structural property of the network yields some natural closures, where the evolution of a particular state can typically be exactly given in terms of the corresponding or projected states on the subnetworks and the cut-vertex. A byproduct of this analysis is an alternative probabilistic proof of the exactness of the closures for tree-like networks presented in Sharkey et al. (Bull Math Biol doi: 10.1007/s11538-013-9923-5 , 2012). In this paper we also elaborate on how the main result can be applied to more realistic networks, for which we write down the ODEs explicitly and compare output from these to results from simulation. Furthermore, we give a general, recipe-like method of how to apply the reduction by closures technique for arbitrary networks, and give an upper bound on the maximum number of equations needed for an exact representation.
منابع مشابه
Exact Equations for SIR Epidemics on Tree Graphs
We consider Markovian susceptible-infectious-removed (SIR) dynamics on time-invariant weighted contact networks where the infection and removal processes are Poisson and where network links may be directed or undirected. We prove that a particular pair-based moment closure representation generates the expected infectious time series for networks with no cycles in the underlying graph. Moreover,...
متن کاملExact and approximate moment closures for non-Markovian network epidemics.
Moment-closure techniques are commonly used to generate low-dimensional deterministic models to approximate the average dynamics of stochastic systems on networks. The quality of such closures is usually difficult to asses and furthermore the relationship between model assumptions and closure accuracy are often difficult, if not impossible, to quantify. Here we carefully examine some commonly u...
متن کاملExact Markovian SIR and SIS epidemics on networks and an upper bound for the epidemic threshold
Exploiting the power of the expectation operator and indicator (or Bernoulli) random variables, we present the exact governing equations for both the SIR and SIS epidemic models on networks. Although SIR and SIS are basic epidemic models, deductions from their exact stochastic equations without making approximations (such as the common mean-field approximation) are scarce. An exact analytic sol...
متن کاملNodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated.
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-...
متن کاملA covering-graph approach to epidemics on SIS and SIS-like networks.
In this paper, we introduce a new class of epidemics on networks which we call SI(S/I). SI(S/I) networks differ from SIS networks in allowing an infected individual to become reinfected without first passing to the susceptible state. We use a covering-graph construction to compare SIR, SIS, and SI(S/I) networks. Like the SIR networks that cover them, SI(S/I) networks exhibit infection probabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of mathematical biology
دوره 70 3 شماره
صفحات -
تاریخ انتشار 2015